Tuesday, December 1, 2015

p. 625: $38,39,40,41,42,43,45,71,73,75,78,80$

Problem 38

Problem. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}$ converges absolutely or conditionally, or diverges.
Solution. As a p-series, the series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges. Therefore, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}}$ converges absolutely.

Problem 39

Problem. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}$ converges absolutely or conditionally, or diverges.
Solution. By the Direct Comparison Test or the Limit Comparison Test with $\sum_{n=0}^{\infty} \frac{1}{2^{n}}$, the series $\sum_{n=1}^{\infty} \frac{1}{n!}$ converges. Therefore, $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n!}$ converges absolutely.

Problem 40

Problem. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+3}$ converges absolutely or conditionally, or diverges.
Solution. By the Alternating Series Test, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+3}$ converges. However, by the
Limit Comparison Test with $\sum_{n=1}^{\infty} \frac{1}{n}$, the series $\sum_{n=1}^{\infty} \frac{1}{n+3}$ diverges. Therefore, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n+3}$ converges conditionally.

Problem 41

Problem. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converges absolutely or conditionally, or diverges.

Solution. By the Alternating Series Test, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converges. However, the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges. Therefore, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converges conditionally.

Problem 42

Problem. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \sqrt{n}}$ converges absolutely or conditionally, or diverges.
Solution. By the Alternating Series Test, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n \sqrt{n}}$ converges. In addition, as a p-series, the series $\sum_{n=1}^{\infty} \frac{1}{n \sqrt{n}}$ also converges. Therefore, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n}}$ converges absolutely.

Problem 43

Problem. Determine whether the series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n^{2}}{(n+1)^{2}}$ converges absolutely or conditionally, or diverges.
Solution. By the Divergence Test, $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n^{2}}{(n+1)^{2}}$ diverges because $\lim _{n \rightarrow \infty} \frac{n^{2}}{(n+1)^{2}} \neq 0$.

Problem 45

Problem. Determine whether the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \ln n}$ converges absolutely or conditionally, or diverges.
Solution. By the Alternating Series Test, $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \ln n}$ converges. By the Integral Test, $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$ diverges. Therefore, $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \ln n}$ converges conditionally.

Problem 71

Problem. Test the series $\sum_{n=1}^{\infty} \frac{10}{n^{3 / 2}}$ for convergence or divergence and identify the test used.

Solution. This series is 10 times the p-series $\sum_{n=1}^{\infty} \frac{1}{n^{3 / 2}}$, which converges. Therefore, by the p-series test, $\sum_{n=1}^{\infty} \frac{10}{n^{3 / 2}}$ converges.

Problem 73

Problem. Test the series $\sum_{n=1}^{\infty} \frac{3^{n}}{n^{2}}$ for convergence or divergence and identify the test used.

Solution. Use the Divergence Test and L'Hôpital's Rule.

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{3^{n}}{n^{2}} & =\lim _{n \rightarrow \infty} \frac{3^{n} \ln 3}{2 n} \\
& =\lim _{n \rightarrow \infty} \frac{3^{n}(\ln 3)^{2}}{2} \\
& =\infty
\end{aligned}
$$

Therefore, $\sum_{n=1}^{\infty} \frac{3^{n}}{n^{2}}$ diverges.

Problem 75

Problem. Test the series $\sum_{n=0}^{\infty} 5\left(\frac{7}{8}\right)^{n}$ for convergence or divergence and identify the test used.
Solution. This series is 5 times the geometric series $\sum_{n=0}^{\infty}\left(\frac{7}{8}\right)^{n}$, which converges because $\frac{7}{8}<1$. Therefore, $\sum_{n=0}^{\infty} 5\left(\frac{7}{8}\right)^{n}$ converges.

Problem 78

Problem. Test the series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+4}$ for convergence or divergence and identify the test used.
Solution. By the Alternating Series Test, $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n+4}$ converges.

Problem 80

Problem. Test the series $\sum_{n=2}^{\infty} \frac{\ln n}{n}$ for convergence or divergence and identify the test used.
Solution. Use the Direct Comparison Test, comparing to $\sum_{n=2}^{\infty} \frac{1}{n}$, which diverges. Obviously, $\frac{\ln n}{n}>\frac{1}{n}$ for all $n>e$. Therefore, $\sum_{n=2}^{\infty} \frac{\ln n}{n}$ diverges.

